
Sato Sota (DaiLambda, Inc.)

4/18 @ lab8 lunch talk

Stack operation optimization
for Michelson

 P2

Background

● Michelson
– for Tezos smart-contract development
– Stack based

● c.f.) Forth / Java bytecode / OCaml bytecode

– Statically typed
– Hard to write by hand

● Various high-level languages & compilers are developed

● Michelson
– for Tezos smart-contract development
– Stack based

● c.f.) Forth / Java bytecode / OCaml bytecode

– Statically typed
– Hard to write by hand

● Various high-level languages & compilers are developed

 P3

Michelson code example
● https://smartpy.io/ide

– Online IDE for Python → Michelson compiler

● https://smartpy.io/ide
– Online IDE for Python → Michelson compiler

https://smartpy.io/ide
https://smartpy.io/ide

 P4

Michelson in Real World
● Program costs “storage burn”
in proportion to its size
– 1byte ~ 0.001$ ~ 0.1 yen

● Unoptimized contracts are deployed
– Compiler emits unoptimized code
– Optz (our optimizer) reduces avg. 5% of size

● Program costs “storage burn”
in proportion to its size
– 1byte ~ 0.001$ ~ 0.1 yen

● Unoptimized contracts are deployed
– Compiler emits unoptimized code
– Optz (our optimizer) reduces avg. 5% of size

 P5

Optz
● https://dailambda.jp/optz/

– Online editor: https://dailambda.jp/optz-js/
● Optz optimizes Michelson code in 3 ways
1. pattern matching

● { SWAP; LT; } → { GT; }
● { DROP n; DROP m; } → { DROP (n+m); }

2. Exhaustive search on stack manip op seq
3. Special case optimization

● https://dailambda.jp/optz/
– Online editor: https://dailambda.jp/optz-js/

● Optz optimizes Michelson code in 3 ways
1. pattern matching

● { SWAP; LT; } → { GT; }
● { DROP n; DROP m; } → { DROP (n+m); }

2. Exhaustive search on stack manip op seq
3. Special case optimization

https://dailambda.jp/optz/
https://dailambda.jp/optz-js/
https://dailambda.jp/optz/
https://dailambda.jp/optz-js/

 P6

Optimization Example of
Exhaustive search

● Before) SWAP; DUP 1; DUG 2

● After) DUP 2

● Before) SWAP; DUP 1; DUG 2

● After) DUP 2

SWAP DUP 1 DUG 2

 P7

Target of exhaustive search

Sequence of stack manipulation operations
● Target

– PUSH, DUP, DROP ... insert/delete elements
– SWAP, DIG, DUG ... rearrange elements

● Non-target
– ADD, MUL, CMP ... calculation
– IF, LOOP ... control operators

Sequence of stack manipulation operations
● Target

– PUSH, DUP, DROP ... insert/delete elements
– SWAP, DIG, DUG ... rearrange elements

● Non-target
– ADD, MUL, CMP ... calculation
– IF, LOOP ... control operators

 P8

Stack manipulation function
● Stack manipulation operation sequence
represents stack → stack function
– Symbolic execution result of stack
– e.g.) { SWAP; DUP 1; DUG 2; }
 { DUP 2; }

● Find cheapest stack op seq
which represents same function

・・・

 P9

Exaustive Optimization
using Dijkstra search

● Find best op with Dijkstra search
– Cost of edge is `op size + op exec cost`

● Find best op with Dijkstra search
– Cost of edge is `op size + op exec cost`

SWAP DUP 1 DUG 2

DROP 1

DUP 2

 P10

Computational Complexity of
exhaustive search

● where is “the num of nodes in graph”
● is upper bounded by
L := num_of_variable_variations ^ max_stack_length

● We use L to prevent time-consuming optimization.
● Empirically, we set L to 10000.0

– Every sampled contracts is optimized within 1[s].

● where is “the num of nodes in graph”
● is upper bounded by
L := num_of_variable_variations ^ max_stack_length

● We use L to prevent time-consuming optimization.
● Empirically, we set L to 10000.0

– Every sampled contracts is optimized within 1[s].

O(N 2 log N) N

N

 P11

Special Case Optimization
● Drop-only op seq

– Result stack is sub-sequence of start stack
– e.g.) { SWAP; DROP; SWAP; DROP; … }
– L is too big to optimize with exhaustive search.
Instead, we use ad-hoc optimization.

– Such unoptimized drop-only seq is generated from
stack cleaning in function epilogue.

● Drop-only op seq
– Result stack is sub-sequence of start stack
– e.g.) { SWAP; DROP; SWAP; DROP; … }
– L is too big to optimize with exhaustive search.
Instead, we use ad-hoc optimization.

– Such unoptimized drop-only seq is generated from
stack cleaning in function epilogue.

 P12

Result of optimized code size
Contracts deployed in 2021-02-18 - 2022-02-17
Avg. size reduction is 5% / 243byte (~ 24 yen)

 P13

A* search for faster optimization
● Dijkstra search

– Search from the node whose cost(node) is the smallest.

● A* search
– Estimate score(node) which satisfies
0 <= score(node) <= actual_distance(node,goal)

● e.g.) solving maze → score(node) := Manhattan distance to goal

– Use cost(node) + score(node)
instead of cost(node) for searching

● Dijkstra search
– Search from the node whose cost(node) is the smallest.

● A* search
– Estimate score(node) which satisfies
0 <= score(node) <= actual_distance(node,goal)

● e.g.) solving maze → score(node) := Manhattan distance to goal

– Use cost(node) + score(node)
instead of cost(node) for searching

 P14

Good score function
for stack modification op seq

● Required number of PUSH operations
– score(stack) :=
 size(set(goal) - set(stack)) * cost(PUSH)

– The vars appear in goal,
and not appear in current stack,
should be pushed.

● Required number of PUSH operations
– score(stack) :=
 size(set(goal) - set(stack)) * cost(PUSH)

– The vars appear in goal,
and not appear in current stack,
should be pushed.

 P15

Result of Optimization Speed
A* v.s. Dijkstra

Reduced Searched Node :: 90% Reduced Time :: 10%

 P16

Summary

● Optz uses 3 types of optimizations,
pattern matching, exhaustive search, and
drop-only sequence.

● Optz reduces avg. 5% size of code.
● A* reduces 10% of exhaustive search time.

● Optz uses 3 types of optimizations,
pattern matching, exhaustive search, and
drop-only sequence.

● Optz reduces avg. 5% size of code.
● A* reduces 10% of exhaustive search time.

 P17

Appendix: Materials / References
● https://dailambda.jp/optz/

– Blog post for optz
● https://dailambda.jp/optz-js/

– Web interface for optz
● https://gitlab.com/dailambda/scaml/-/blob/master/src/michelson/optimize.ml

– Source code of the optimizer part of optz
● https://medium.com/hackernoon/optimizing-stack-manipulation-in-michelson-31ba7ff11a3a

– Source of the idea for using *A

● https://dailambda.jp/optz/

– Blog post for optz
● https://dailambda.jp/optz-js/

– Web interface for optz
● https://gitlab.com/dailambda/scaml/-/blob/master/src/michelson/optimize.ml

– Source code of the optimizer part of optz
● https://medium.com/hackernoon/optimizing-stack-manipulation-in-michelson-31ba7ff11a3a

– Source of the idea for using *A

https://dailambda.jp/optz/
https://dailambda.jp/optz-js/
https://gitlab.com/dailambda/scaml/-/blob/master/src/michelson/optimize.ml
https://medium.com/hackernoon/optimizing-stack-manipulation-in-michelson-31ba7ff11a3a
https://dailambda.jp/optz/
https://dailambda.jp/optz-js/
https://gitlab.com/dailambda/scaml/-/blob/master/src/michelson/optimize.ml
https://medium.com/hackernoon/optimizing-stack-manipulation-in-michelson-31ba7ff11a3a

 P18

Appendix:
score function with LCS

● Estimate with LCS
– Good op sequence will preserve stack ordering
– score’(st) :=
 let l = LCS(st,goal) in
 let push = |set(goal)-set(st)| in
 (len(st)-l) * cost(DROP) +
 (len(goal)-push-l) * cost(DUP) +
 push * cost(PUSH)

● Estimate with LCS
– Good op sequence will preserve stack ordering
– score’(st) :=
 let l = LCS(st,goal) in
 let push = |set(goal)-set(st)| in
 (len(st)-l) * cost(DROP) +
 (len(goal)-push-l) * cost(DUP) +
 push * cost(PUSH)

 P19

Appendix:
LCS score v.s. PUSH diff only score
Reduced Searched Node :: 80% Reduced Time :: 0%

 P20

Appendix:
Best parameter for stack limit L

Tested on L := 10000.0,
 100000.0,
 1000000.0

Execution time seems to
be proportional to L.

 P21

Appendix:
Best parameter for stack limit L

Increasing L
scarcely reduces code size.

i.e.

Speeding up optimization is
not so urgent.

 P22

Appendix: Future work
● Extend target ops of exhaustive search

– Data type constructing / deconstructing ops
PAIR / CAR / CDR / CONS

– Calculation ops
ADD / SUB / MUL / DIV / LE

● Faster algorithm for exhaustive search

● Extend target ops of exhaustive search
– Data type constructing / deconstructing ops
PAIR / CAR / CDR / CONS

– Calculation ops
ADD / SUB / MUL / DIV / LE

● Faster algorithm for exhaustive search

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

