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Background

● Michelson
– for Tezos smart-contract development
– Stack based

● c.f.) Forth / Java bytecode / OCaml bytecode

– Statically typed
– Hard to write by hand

● Various high-level languages & compilers are developed 
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Michelson code example
● https://smartpy.io/ide

– Online IDE for Python → Michelson compiler

● https://smartpy.io/ide
– Online IDE for Python → Michelson compiler
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Michelson in Real World
● Program costs “storage burn”
in proportion to its size
– 1byte ~ 0.001$ ~ 0.1 yen

● Unoptimized contracts are deployed
– Compiler emits unoptimized code
– Optz (our optimizer) reduces avg. 5% of size  
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Optz
● https://dailambda.jp/optz/

– Online editor: https://dailambda.jp/optz-js/
● Optz optimizes Michelson code in 3 ways
1. pattern matching

● { SWAP; LT; } → { GT; }
● { DROP n; DROP m; } → { DROP (n+m); }

2. Exhaustive search on stack manip op seq
3. Special case optimization
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1. pattern matching

● { SWAP; LT; } → { GT; }
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Optimization Example of 
Exhaustive search

● Before) SWAP; DUP 1; DUG 2

● After) DUP 2

● Before) SWAP; DUP 1; DUG 2

● After) DUP 2

SWAP DUP 1 DUG 2
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Target of exhaustive search

Sequence of stack manipulation operations 
● Target

– PUSH, DUP, DROP ...  insert/delete elements
– SWAP, DIG, DUG  ...  rearrange elements

● Non-target
– ADD, MUL, CMP   ...  calculation
– IF, LOOP        ...  control operators

Sequence of stack manipulation operations 
● Target

– PUSH, DUP, DROP ...  insert/delete elements
– SWAP, DIG, DUG  ...  rearrange elements

● Non-target
– ADD, MUL, CMP   ...  calculation
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Stack manipulation function
● Stack manipulation operation sequence  
represents stack → stack function
– Symbolic execution result of stack
– e.g.) { SWAP; DUP 1; DUG 2; }
      { DUP 2; }

● Find cheapest stack op seq
which represents same function 

・・・
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Exaustive Optimization
using Dijkstra search

● Find best op with Dijkstra search
– Cost of edge is `op size + op exec cost`

● Find best op with Dijkstra search
– Cost of edge is `op size + op exec cost`

SWAP DUP 1 DUG 2

DROP 1

DUP 2
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Computational Complexity of 
exhaustive search

●          where   is “the num of nodes in graph”
●   is upper bounded by
L := num_of_variable_variations ^ max_stack_length

● We use L to prevent time-consuming optimization. 
● Empirically, we set L to 10000.0

– Every sampled contracts is optimized within 1[s].

●          where   is “the num of nodes in graph”
●   is upper bounded by
L := num_of_variable_variations ^ max_stack_length

● We use L to prevent time-consuming optimization. 
● Empirically, we set L to 10000.0

– Every sampled contracts is optimized within 1[s].

O(N 2 log N ) N

N
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Special Case Optimization
● Drop-only op seq

– Result stack is sub-sequence of start stack
– e.g.) { SWAP; DROP; SWAP; DROP; … }
– L is too big to optimize with exhaustive search. 
Instead, we use ad-hoc optimization.

– Such unoptimized drop-only seq is generated from 
stack cleaning in function epilogue.

● Drop-only op seq
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– e.g.) { SWAP; DROP; SWAP; DROP; … }
– L is too big to optimize with exhaustive search. 
Instead, we use ad-hoc optimization.

– Such unoptimized drop-only seq is generated from 
stack cleaning in function epilogue.
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Result of optimized code size
Contracts deployed in 2021-02-18 - 2022-02-17
Avg. size reduction is 5% / 243byte (~ 24 yen)
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A* search for faster optimization
● Dijkstra search

– Search from the node whose cost(node) is the smallest.

● A* search
– Estimate score(node) which satisfies
0 <= score(node) <= actual_distance(node,goal) 

● e.g.) solving maze → score(node) := Manhattan distance to goal

– Use cost(node) + score(node)
instead of cost(node) for searching
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Good score function
for stack modification op seq

● Required number of PUSH operations
– score(stack) :=
  size(set(goal) - set(stack)) * cost(PUSH)

– The vars appear in goal,
and not appear in current stack,
should be pushed.

● Required number of PUSH operations
– score(stack) :=
  size(set(goal) - set(stack)) * cost(PUSH)

– The vars appear in goal,
and not appear in current stack,
should be pushed.
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Result of Optimization Speed 
A* v.s. Dijkstra

Reduced Searched Node :: 90% Reduced Time :: 10%
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Summary

● Optz uses 3 types of optimizations, 
pattern matching, exhaustive search, and 
drop-only sequence.

● Optz reduces avg. 5% size of code.
● A* reduces 10% of exhaustive search time.

● Optz uses 3 types of optimizations, 
pattern matching, exhaustive search, and 
drop-only sequence.

● Optz reduces avg. 5% size of code.
● A* reduces 10% of exhaustive search time.
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Appendix: Materials / References
● https://dailambda.jp/optz/

– Blog post for optz
● https://dailambda.jp/optz-js/

– Web interface for optz 
● https://gitlab.com/dailambda/scaml/-/blob/master/src/michelson/optimize.ml

– Source code of the optimizer part of optz
● https://medium.com/hackernoon/optimizing-stack-manipulation-in-michelson-31ba7ff11a3a

– Source of the idea for using *A
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Appendix:
score function with LCS

● Estimate with LCS
– Good op sequence will preserve stack ordering
– score’(st) :=
  let l = LCS(st,goal) in
  let push = |set(goal)-set(st)| in 
  (len(st)-l) * cost(DROP) +
  (len(goal)-push-l) * cost(DUP) +
  push * cost(PUSH)
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– Good op sequence will preserve stack ordering
– score’(st) :=
  let l = LCS(st,goal) in
  let push = |set(goal)-set(st)| in 
  (len(st)-l) * cost(DROP) +
  (len(goal)-push-l) * cost(DUP) +
  push * cost(PUSH)
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Appendix:
LCS score v.s. PUSH diff only score
Reduced Searched Node :: 80% Reduced Time :: 0%
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Appendix:
Best parameter for stack limit L 

Tested on L :=   10000.0,
                100000.0,
               1000000.0

Execution time seems to
be proportional to L.
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Appendix:
Best parameter for stack limit L 

Increasing L
scarcely reduces code size.

i.e.

Speeding up optimization is
not so urgent.
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Appendix: Future work
● Extend target ops of exhaustive search

– Data type constructing / deconstructing ops
PAIR / CAR / CDR / CONS

– Calculation ops
ADD / SUB / MUL / DIV / LE

● Faster algorithm for exhaustive search
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